Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 290
Filter
1.
bioRxiv ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38746231

ABSTRACT

Learning disabilities affect a significant proportion of children worldwide, with far-reaching consequences for their academic, professional, and personal lives. Here we develop digital twins - biologically plausible personalized Deep Neural Networks (pDNNs) - to investigate the neurophysiological mechanisms underlying learning disabilities in children. Our pDNN reproduces behavioral and neural activity patterns observed in affected children, including lower performance accuracy, slower learning rates, neural hyper-excitability, and reduced neural differentiation of numerical problems. Crucially, pDNN models reveal aberrancies in the geometry of manifold structure, providing a comprehensive view of how neural excitability influences both learning performance and the internal structure of neural representations. Our findings not only advance knowledge of the neurophysiological underpinnings of learning differences but also open avenues for targeted, personalized strategies designed to bridge cognitive gaps in affected children. This work reveals the power of digital twins integrating AI and neuroscience to uncover mechanisms underlying neurodevelopmental disorders.

3.
Dev Sci ; : e13524, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695515

ABSTRACT

Number sense is fundamental to the development of numerical problem-solving skills. In early childhood, children establish associations between non-symbolic (e.g., a set of dots) and symbolic (e.g., Arabic numerals) representations of quantity. The developmental estrangement theory proposes that the relationship between non-symbolic and symbolic representations of quantity evolves with age, with increased dissociation across development. Consistent with this theory, recent research suggests that cross-format neural representational similarity (NRS) between non-symbolic and symbolic quantities is correlated with arithmetic fluency in children but not in adolescents. However, it is not known if short-term training (STT) can induce similar changes as long-term development. In this study, children aged 7-10 years underwent a theoretically motivated 4-week number sense training. Using multivariate neural pattern analysis, we investigated whether short-term learning could modify the relation between cross-format NRS and arithmetic skills. Our results revealed a significant correlation between cross-format NRS and arithmetic fluency in distributed brain regions, including the parietal and prefrontal cortices, prior to training. However, this association was no longer observed after training, and multivariate predictive models confirmed these findings. Our findings provide evidence that intensive STT during early childhood can promote behavioral improvements and neural plasticity that resemble and recapitulate long-term neurodevelopmental changes that occur from childhood to adolescence. More generally, our study contributes to our understanding of the malleability of number sense and highlights the potential for targeted interventions to shape neurodevelopmental trajectories in early childhood. RESEARCH HIGHLIGHTS: We tested the hypothesis that short-term number sense training induces the dissociation of symbolic numbers from non-symbolic representations of quantity in children. We leveraged a theoretically motivated intervention and multivariate pattern analysis to determine training-induced neurocognitive changes in the relation between number sense and arithmetic problem-solving skills. Neural representational similarity between non-symbolic and symbolic quantity representations was correlated with arithmetic skills before training but not after training. Short-term training recapitulates long-term neurodevelopmental changes associated with numerical problem-solving from childhood to adolescence.

4.
bioRxiv ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38645139

ABSTRACT

Number sense is essential for early mathematical development but it is compromised in children with mathematical disabilities (MD). Here we investigate the impact of a personalized 4-week Integrated Number Sense (INS) tutoring program aimed at improving the connection between nonsymbolic (sets of objects) and symbolic (Arabic numerals) representations in children with MD. Utilizing neural pattern analysis, we found that INS tutoring not only improved cross-format mapping but also significantly boosted arithmetic fluency in children with MD. Critically, the tutoring normalized previously low levels of cross-format neural representations in these children to pre-tutoring levels observed in typically developing, especially in key brain regions associated with numerical cognition. Moreover, we identified distinct, 'inverted U-shaped' neurodevelopmental changes in the MD group, suggesting unique neural plasticity during mathematical skill development. Our findings highlight the effectiveness of targeted INS tutoring for remediating numerical deficits in MD, and offer a foundation for developing evidence-based educational interventions.

5.
Proc Natl Acad Sci U S A ; 121(15): e2315167121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38557177

ABSTRACT

The default mode network (DMN) is a large-scale brain network known to be suppressed during a wide range of cognitive tasks. However, our comprehension of its role in naturalistic and unconstrained behaviors has remained elusive because most research on the DMN has been conducted within the restrictive confines of MRI scanners. Here, we use multisite GCaMP (a genetically encoded calcium indicator) fiber photometry with simultaneous videography to probe DMN function in awake, freely exploring rats. We examined neural dynamics in three core DMN nodes-the retrosplenial cortex, cingulate cortex, and prelimbic cortex-as well as the anterior insula node of the salience network, and their association with the rats' spatial exploration behaviors. We found that DMN nodes displayed a hierarchical functional organization during spatial exploration, characterized by stronger coupling with each other than with the anterior insula. Crucially, these DMN nodes encoded the kinematics of spatial exploration, including linear and angular velocity. Additionally, we identified latent brain states that encoded distinct patterns of time-varying exploration behaviors and found that higher linear velocity was associated with enhanced DMN activity, heightened synchronization among DMN nodes, and increased anticorrelation between the DMN and anterior insula. Our findings highlight the involvement of the DMN in collectively and dynamically encoding spatial exploration in a real-world setting. Our findings challenge the notion that the DMN is primarily a "task-negative" network disengaged from the external world. By illuminating the DMN's role in naturalistic behaviors, our study underscores the importance of investigating brain network function in ecologically valid contexts.


Subject(s)
Default Mode Network , Rodentia , Rats , Animals , Cerebral Cortex , Brain/diagnostic imaging , Gyrus Cinguli/diagnostic imaging , Brain Mapping , Magnetic Resonance Imaging , Nerve Net/diagnostic imaging
6.
Nano Lett ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38598721

ABSTRACT

Realizing lattices of exciton polariton condensates has been of much interest owing to the potential of such systems to realize analogue Hamiltonian simulators and physical computing architectures. Here, we report the realization of a room temperature polariton condensate lattice using a direct-write approach. Polariton condensation is achieved in a microcavity embedded with host-guest Frenkel excitons of an organic dye (rhodamine) in a small-molecule ionic isolation lattice (SMILES). The microcavity is patterned using focused ion beam etching to realize arbitrary lattice geometries, including defect sites on demand. The band structure of the lattice and the emergence of condensation are imaged using momentum-resolved spectroscopy. The introduction of defect sites is shown to lower the condensation threshold and result in the formation of a defect band in the condensation spectrum. The present approach allows us to study periodic, quasiperiodic, and disordered polariton condensate lattices at room temperature using a direct-write approach.

7.
Mol Psychiatry ; 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38605171

ABSTRACT

A major genetic risk factor for psychosis is 22q11.2 deletion (22q11.2DS). However, robust and replicable functional brain signatures of 22q11.2DS and 22q11.2DS-associated psychosis remain elusive due to small sample sizes and a focus on small single-site cohorts. Here, we identify functional brain signatures of 22q11.2DS and 22q11.2DS-associated psychosis, and their links with idiopathic early psychosis, using one of the largest multi-cohort data to date. We obtained multi-cohort clinical phenotypic and task-free fMRI data from 856 participants (101 22q11.2DS, 120 idiopathic early psychosis, 101 idiopathic autism, 123 idiopathic ADHD, and 411 healthy controls) in a case-control design. A novel spatiotemporal deep neural network (stDNN)-based analysis was applied to the multi-cohort data to identify functional brain signatures of 22q11.2DS and 22q11.2DS-associated psychosis. Next, stDNN was used to test the hypothesis that the functional brain signatures of 22q11.2DS-associated psychosis overlap with idiopathic early psychosis but not with autism and ADHD. stDNN-derived brain signatures distinguished 22q11.2DS from controls, and 22q11.2DS-associated psychosis with very high accuracies (86-94%) in the primary cohort and two fully independent cohorts without additional training. Robust distinguishing features of 22q11.2DS-associated psychosis emerged in the anterior insula node of the salience network and the striatum node of the dopaminergic reward pathway. These features also distinguished individuals with idiopathic early psychosis from controls, but not idiopathic autism or ADHD. Our results reveal that individuals with 22q11.2DS exhibit a highly distinct functional brain organization compared to controls. Additionally, the brain signatures of 22q11.2DS-associated psychosis overlap with those of idiopathic early psychosis in the salience network and dopaminergic reward pathway, providing substantial empirical support for the theoretical aberrant salience-based model of psychosis. Collectively, our findings, replicated across multiple independent cohorts, advance the understanding of 22q11.2DS and associated psychosis, underscoring the value of 22q11.2DS as a genetic model for probing the neurobiological underpinnings of psychosis and its progression.

8.
Nat Commun ; 15(1): 2185, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38467606

ABSTRACT

The existence of a multiple-demand cortical system with an adaptive, domain-general, role in cognition has been proposed, but the underlying dynamic mechanisms and their links to cognitive control abilities are poorly understood. Here we use a probabilistic generative Bayesian model of brain circuit dynamics to determine dynamic brain states across multiple cognitive domains, independent datasets, and participant groups, including task fMRI data from Human Connectome Project, Dual Mechanisms of Cognitive Control study and a neurodevelopment study. We discover a shared brain state across seven distinct cognitive tasks and found that the dynamics of this shared brain state predicted cognitive control abilities in each task. Our findings reveal the flexible engagement of dynamic brain processes across multiple cognitive domains and participant groups, and uncover the generative mechanisms underlying the functioning of a domain-general cognitive operating system. Our computational framework opens promising avenues for probing neurocognitive function and dysfunction.


Subject(s)
Brain , Connectome , Humans , Bayes Theorem , Brain/diagnostic imaging , Cognition , Models, Statistical , Magnetic Resonance Imaging , Nerve Net
9.
bioRxiv ; 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38463954

ABSTRACT

Dynamic interactions between large-scale brain networks are thought to underpin human cognitive processes, but their underlying electrophysiological dynamics remain unknown. The triple network model, which highlights the salience, default mode, and frontoparietal networks, provides a fundamental framework for understanding these interactions. To unravel the electrophysiological mechanisms underlying these network dynamics, we utilized intracranial EEG recordings from 177 participants across four distinct memory experiments. Our findings revealed a consistent pattern of directed information flow from the anterior insula, a key node of the salience network, to both the default mode and frontoparietal networks. Notably, this pattern of information transmission was observed regardless of the nature of the tasks, whether they involved externally driven stimuli during encoding or internally governed processes during free recall. Moreover, the directed information flow from the anterior insula to the other networks was present irrespective of the activation or suppression states of individual network nodes. Furthermore, we observed a specific suppression of high-gamma power in the posterior cingulate cortex/precuneus node of the default mode network during memory encoding, but not recall, suggesting a task-specific functional down-regulation of this region. Crucially, these results were reliably replicated across all four experiments, underscoring the robustness and generalizability of our findings. Our study significantly advances the understanding of how coordinated neural network interactions underpin cognitive operations and highlights the critical role of the anterior insula in orchestrating the dynamics of large-scale brain networks. These findings have important implications for elucidating the neural basis of cognitive control and its potential disruptions in various neurological and psychiatric disorders.

10.
Proc Natl Acad Sci U S A ; 121(9): e2310012121, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38377194

ABSTRACT

Sex plays a crucial role in human brain development, aging, and the manifestation of psychiatric and neurological disorders. However, our understanding of sex differences in human functional brain organization and their behavioral consequences has been hindered by inconsistent findings and a lack of replication. Here, we address these challenges using a spatiotemporal deep neural network (stDNN) model to uncover latent functional brain dynamics that distinguish male and female brains. Our stDNN model accurately differentiated male and female brains, demonstrating consistently high cross-validation accuracy (>90%), replicability, and generalizability across multisession data from the same individuals and three independent cohorts (N ~ 1,500 young adults aged 20 to 35). Explainable AI (XAI) analysis revealed that brain features associated with the default mode network, striatum, and limbic network consistently exhibited significant sex differences (effect sizes > 1.5) across sessions and independent cohorts. Furthermore, XAI-derived brain features accurately predicted sex-specific cognitive profiles, a finding that was also independently replicated. Our results demonstrate that sex differences in functional brain dynamics are not only highly replicable and generalizable but also behaviorally relevant, challenging the notion of a continuum in male-female brain organization. Our findings underscore the crucial role of sex as a biological determinant in human brain organization, have significant implications for developing personalized sex-specific biomarkers in psychiatric and neurological disorders, and provide innovative AI-based computational tools for future research.


Subject(s)
Deep Learning , Nervous System Diseases , Young Adult , Humans , Male , Female , Sex Characteristics , Brain , Aging
11.
iScience ; 27(2): 108915, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38318347

ABSTRACT

The anterior insular cortex, a central node of the salience network, plays a critical role in cognitive control and attention. Here, we investigated the feasibility of enhancing attention using real-time fMRI neurofeedback training that targets the right anterior insular cortex (rAIC). 56 healthy adults underwent two neurofeedback training sessions. The experimental group received feedback from neural responses in the rAIC, while control groups received sham feedback from the primary visual cortex or no feedback. Cognitive functioning was evaluated before, immediately after, and three months post-training. Our results showed that only the rAIC neurofeedback group successfully increased activity in the rAIC. Furthermore, this group showed enhanced attention-related alertness up to three months after the training. Our findings provide evidence for the potential of rAIC neurofeedback as a viable approach for enhancing attention-related alertness, which could pave the way for non-invasive therapeutic strategies to address conditions characterized by attention deficits.

12.
Dev Sci ; : e13489, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38421061

ABSTRACT

Abacus-based mental calculation (AMC) is a widely used educational tool for enhancing math learning, offering an accessible and cost-effective method for classroom implementation. Despite its universal appeal, the neurocognitive mechanisms that drive the efficacy of AMC training remain poorly understood. Notably, although abacus training relies heavily on the rapid recall of number positions and sequences, the role of memory systems in driving long-term AMC learning remains unknown. Here, we sought to address this gap by investigating the role of the medial temporal lobe (MTL) memory system in predicting long-term AMC training gains in second-grade children, who were longitudinally assessed up to fifth grade. Leveraging multimodal neuroimaging data, we tested the hypothesis that MTL systems, known for their involvement in associative memory, are instrumental in facilitating AMC-induced improvements in math skills. We found that gray matter volume in bilateral MTL, along with functional connectivity between the MTL and frontal and ventral temporal-occipital cortices, significantly predicted learning gains. Intriguingly, greater gray matter volume but weaker connectivity of the posterior parietal cortex predicted better learning outcomes, offering a more nuanced view of brain systems at play in AMC training. Our findings not only underscore the critical role of the MTL memory system in AMC training but also illuminate the neurobiological factors contributing to individual differences in cognitive skill acquisition. RESEARCH HIGHLIGHTS: We investigated the role of medial temporal lobe (MTL) memory system in driving children's math learning following abacus-based mental calculation (AMC) training. AMC training improved math skills in elementary school children across their second and fifth grade. MTL structural integrity and functional connectivity with prefrontal and ventral temporal-occipital cortices predicted long-term AMC training-related gains.

13.
Autism ; : 13623613231223354, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38263761

ABSTRACT

LAY ABSTRACT: Memory challenges remain understudied in childhood autism. Our study investigates one specific aspect of memory function, known as pattern separation memory, in autistic children. Pattern separation memory refers to the critical ability to store unique memories of similar stimuli; however, its role in childhood autism remains largely uncharted. Our study first uncovered that the pattern separation memory was significantly reduced in autistic children, and then showed that reduced memory performance was linked to their symptoms of repetitive, restricted interest and behavior. We also identified distinct subgroups with profiles of reduced and increased generalization for pattern separation memory. More than 72% of autistic children showed a tendency to reduce memory generalization, focusing heavily on unique details of objects for memorization. This focus made it challenging for them to identify commonalities across similar entities. Interestingly, a smaller proportion of autistic children displayed an opposite pattern of increased generalization, marked by challenges in differentiating between similar yet distinct objects. Our findings advance the understanding of memory function in autism and have practical implications for devising personalized learning strategies that align with the unique memory patterns exhibited by autistic children. This study will be of broad interest to researchers in psychology, psychiatry, and brain development as well as teachers, parents, clinicians, and the wider public.

14.
Nat Commun ; 15(1): 69, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167681

ABSTRACT

Anisotropic planar polaritons - hybrid electromagnetic modes mediated by phonons, plasmons, or excitons - in biaxial two-dimensional (2D) van der Waals crystals have attracted significant attention due to their fundamental physics and potential nanophotonic applications. In this Perspective, we review the properties of planar hyperbolic polaritons and the variety of methods that can be used to experimentally tune them. We argue that such natural, planar hyperbolic media should be fairly common in biaxial and uniaxial 2D and 1D van der Waals crystals, and identify the untapped opportunities they could enable for functional (i.e. ferromagnetic, ferroelectric, and piezoelectric) polaritons. Lastly, we provide our perspectives on the technological applications of such planar hyperbolic polaritons.

15.
Nano Lett ; 24(2): 557-565, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38179964

ABSTRACT

The manipulation of molecular excited state processes through strong coupling has attracted significant interest for its potential to provide precise control of photochemical phenomena. However, the key limiting factor for achieving this control has been the "dark-state problem", in which photoexcitation populates long-lived reservoir states with energies and dynamics similar to those of bare excitons. Here, we use a sensitive ultrafast transient reflection method with momentum and spectral resolution to achieve the selective excitation of organic exciton-polaritons in open photonic cavities. We show that the energy dispersions of these systems allow us to avoid the parasitic effect of the reservoir states. Under phase-matching conditions, we observe the direct population and decay of polaritons on time scales of less than 100 fs and find that momentum scattering processes occur on even faster time scales. We establish that it is possible to overcome the "dark state problem" through the careful design of strongly coupled systems.

16.
bioRxiv ; 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-37986855

ABSTRACT

Hippocampus-parietal cortex circuits are thought to play a crucial role in memory and attention, but their neural basis remains poorly understood. We employed intracranial EEG from 96 participants (51 females) to investigate the neurophysiological underpinning of these circuits across three memory tasks spanning verbal and spatial domains. We uncovered a consistent pattern of higher causal directed connectivity from the hippocampus to both lateral parietal cortex (supramarginal and angular gyrus) and medial parietal cortex (posterior cingulate cortex) in the delta-theta band during memory encoding and recall. This connectivity was independent of activation or suppression states in the hippocampus or parietal cortex. Crucially, directed connectivity from the supramarginal gyrus to the hippocampus was enhanced in participants with higher memory recall, highlighting its behavioral significance. Our findings align with the attention-to-memory model, which posits that attention directs cognitive resources toward pertinent information during memory formation. The robustness of these results was demonstrated through Bayesian replication analysis of the memory encoding and recall periods across the three tasks. Our study sheds light on the neural basis of casual signaling within hippocampus-parietal circuits, broadening our understanding of their critical roles in human cognition.

17.
Int J Surg Case Rep ; 114: 109134, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38113565

ABSTRACT

INTRODUCTION AND IMPORTANCE: Bouveret's syndrome is an uncommon condition characterized by the impaction of a gallstone in the pylorus or duodenum via a cholecysto-enteric fistula causing gastric outlet obstruction. We report two unusual cases of Bouveret's syndrome causing gastric outlet obstruction in two elderly patients. CASE PRESENTATION: Two elderly female patients presented to the surgical assessment unit with features of gastric outlet obstruction. In both cases, an urgent computed tomography (CT) of the abdomen showed pneumobilia, gastric distension, and gallstones impaction at the duodenal bulb. In Patient 1, endoscopic removal of the impacted gallstones was done successfully. She was discharged three days following an uneventful recovery. In Patient 2, an endoscopic removal of a single large gallstone was attempted, which was unsuccessful. She underwent robotic gastrotomy with extraction of the large gallstone with primary repair. She was discharged on 8th postoperative day. CLINICAL DISCUSSION: Treatment options for Bouveret's syndrome include endoscopic management and surgery. The selection of treatment options depends upon factors like the degree of obstruction, the impaction site, number, type or size of gallstones, patient co-morbidities and clinical parameters at presentation, as well as expertise available, both endoscopic and surgical. CONCLUSIONS: Bouveret's syndrome is one of the rare complications of gallstone. Endoscopic management can be effective at removing the impacted gallstones, which is particularly helpful for those elderly patients who have multiple medical co-morbidities, as in our first patient. Surgical management like minimal invasive surgery (robotic) can be beneficial in failed endoscopic attempt of removal of stone like in the second patient.

18.
bioRxiv ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37693501

ABSTRACT

The default mode network (DMN) is a large-scale brain network known to be suppressed during a wide range of cognitive tasks. However, our comprehension of its role in naturalistic and unconstrained behaviors has remained elusive because most research on the DMN has been conducted within the restrictive confines of MRI scanners. Here we use multisite GCaMP fiber photometry with simultaneous videography to probe DMN function in awake, freely exploring rats. We examined neural dynamics in three core DMN nodes- the retrosplenial cortex, cingulate cortex, and prelimbic cortex- as well as the anterior insula node of the salience network, and their association with the rats' spatial exploration behaviors. We found that DMN nodes displayed a hierarchical functional organization during spatial exploration, characterized by stronger coupling with each other than with the anterior insula. Crucially, these DMN nodes encoded the kinematics of spatial exploration, including linear and angular velocity. Additionally, we identified latent brain states that encoded distinct patterns of time-varying exploration behaviors and discovered that higher linear velocity was associated with enhanced DMN activity, heightened synchronization among DMN nodes, and increased anticorrelation between the DMN and anterior insula. Our findings highlight the involvement of the DMN in collectively and dynamically encoding spatial exploration in a real-world setting. Our findings challenge the notion that the DMN is primarily a "task-negative" network disengaged from the external world. By illuminating the DMN's role in naturalistic behaviors, our study underscores the importance of investigating brain network function in ecologically valid contexts.

19.
Int J Obes (Lond) ; 47(11): 1161-1170, 2023 11.
Article in English | MEDLINE | ID: mdl-37674032

ABSTRACT

BACKGROUND: Endoscopic sleeve gastroplasty (ESG) is a minimally invasive procedure that has been demonstrated in the MERIT randomised, controlled trial to result in substantial and durable additional weight loss in adults with obesity compared with lifestyle modification (LM) alone. We sought to conduct the first cost-effectiveness analysis of ESG versus LM alone in adults with class II obesity (BMI 35.0-39.9 kg/m2) from a national healthcare system perspective in England based on results from this study. METHODS: A 6-state Markov model was developed comprising 5 BMI-based health states and an absorbing death state. Baseline characteristics, utilities, and transition probabilities were informed by patient-level data from the subset of patients with class II obesity in MERIT. Adverse events (AEs) were based on the MERIT safety population. Mortality was estimated by applying BMI-specific hazard ratios from the published literature to UK general population mortality rates. Utilities for the healthy weight and overweight health states were informed from the literature; disutility associated with increasing BMI in the class I-III obesity health states was estimated using MERIT utility data. Disutility due to AEs and the prevalence of obesity-related comorbidities were based on the literature. Costs included intervention costs, AE costs, and comorbidity costs. RESULTS: ESG resulted in higher overall costs than LM alone but led to an increase in quality-adjusted life years (QALYs). The incremental cost-effectiveness ratio (ICER) for ESG vs LM alone was £2453/QALY gained. ESG was consistently cost effective across a wide range of sensitivity analyses, with no ICER estimate exceeding £10,000/QALY gained. In probabilistic sensitivity analysis, the mean ICER was £2502/QALY gained and ESG remained cost effective in 98.25% of iterations at a willingness-to-pay threshold of £20,000/QALY. CONCLUSION: Our study indicates that ESG is highly cost effective versus LM alone for the treatment of adults with class II obesity in England.


Subject(s)
Gastroplasty , Humans , Adult , Cost-Effectiveness Analysis , Cost-Benefit Analysis , Obesity/epidemiology , Obesity/surgery , Life Style , United Kingdom/epidemiology , Quality-Adjusted Life Years
20.
Nature ; 620(7974): 533-537, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37587298

ABSTRACT

Controlling quantum materials with light is of fundamental and technological importance. By utilizing the strong coupling of light and matter in optical cavities1-3, recent studies were able to modify some of their most defining features4-6. Here we study the magneto-optical properties of a van der Waals magnet that supports strong coupling of photons and excitons even in the absence of external cavity mirrors. In this material-the layered magnetic semiconductor CrSBr-emergent light-matter hybrids called polaritons are shown to substantially increase the spectral bandwidth of correlations between the magnetic, electronic and optical properties, enabling largely tunable optical responses to applied magnetic fields and magnons. Our results highlight the importance of exciton-photon self-hybridization in van der Waals magnets and motivate novel directions for the manipulation of quantum material properties by strong light-matter coupling.

SELECTION OF CITATIONS
SEARCH DETAIL
...